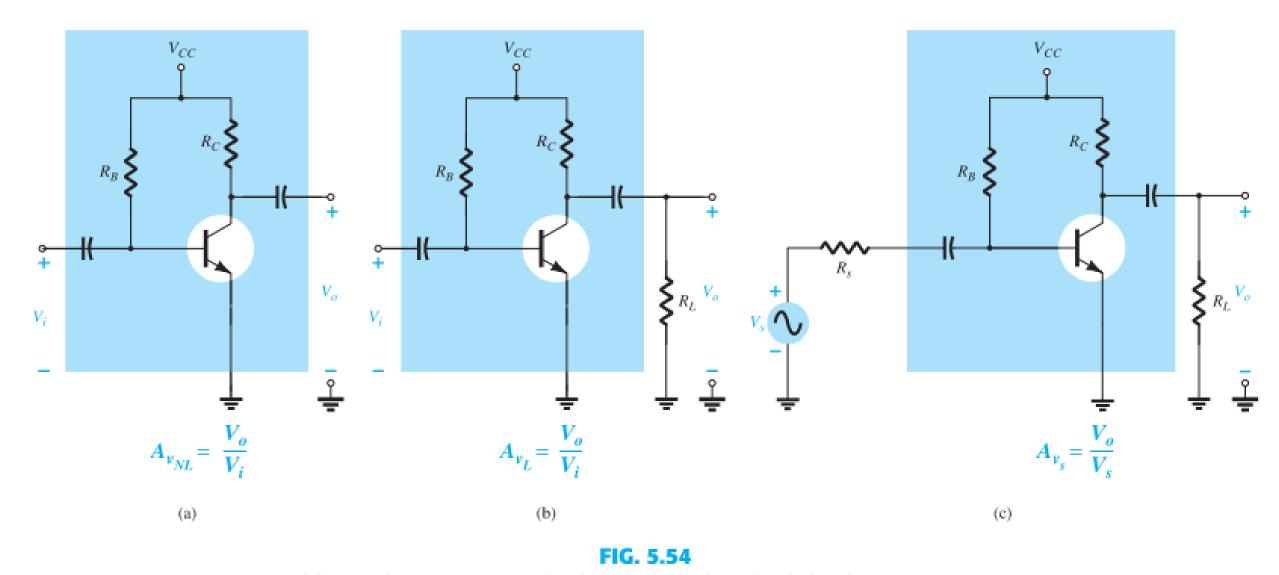
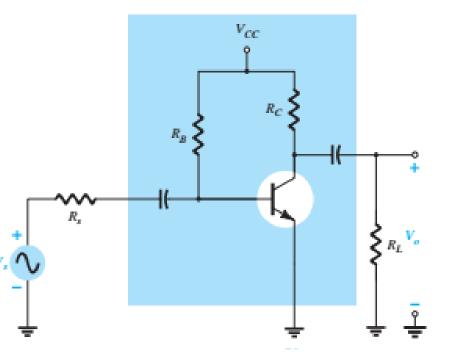

ECE 312 Electronic Circuits (A)

Lec. 7: BJT Modeling and re Transistor Model (small signal analysis) (3)

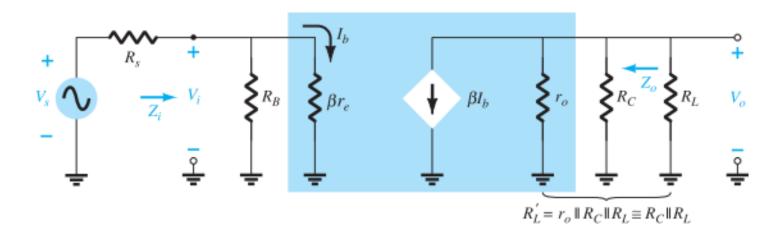

Instructor

Dr. Maher Abdelrasoul http://www.bu.edu.eg/staff/mahersalem3

Effect of R_L and R_s (System Approach)


Effect of R_L and R_s

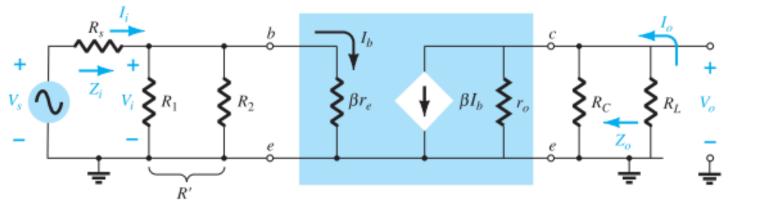
Amplifier configurations: (a) unloaded; (b) loaded; (c) loaded with a source resistance.


Effect of $\rm R_L$ and $\rm R_s$

- The loaded voltage gain of an amplifier is always less than the no-load gain.
- The gain obtained with a source resistance in place will always be less than that obtained under loaded or unloaded conditions due to the drop in applied voltage across the source resistance.
- For the same configuration $A_{vNL} > A_{vL} > A_{vs}$.
- RL $\uparrow \rightarrow$ AVS \uparrow
- RS $\downarrow \rightarrow$ AVS \uparrow
- For any network that have coupling capacitors, the source and load resistance do not affect the dc biasing levels.

Effect of R_L and R_s on different biasing Circuits (1)

Fixed bias ct.



Effect of R_L and R_s on different biasing Circuits (2)

С

 βI_b

Voltage-divider ct.

$$A_{v_L} = \frac{V_o}{V_i} = -\frac{R_C \|R_L}{r_e}$$

$$Z_i = R_1 \|R_2\|\beta r_e$$

$$Z_o = R_C \| r_o$$

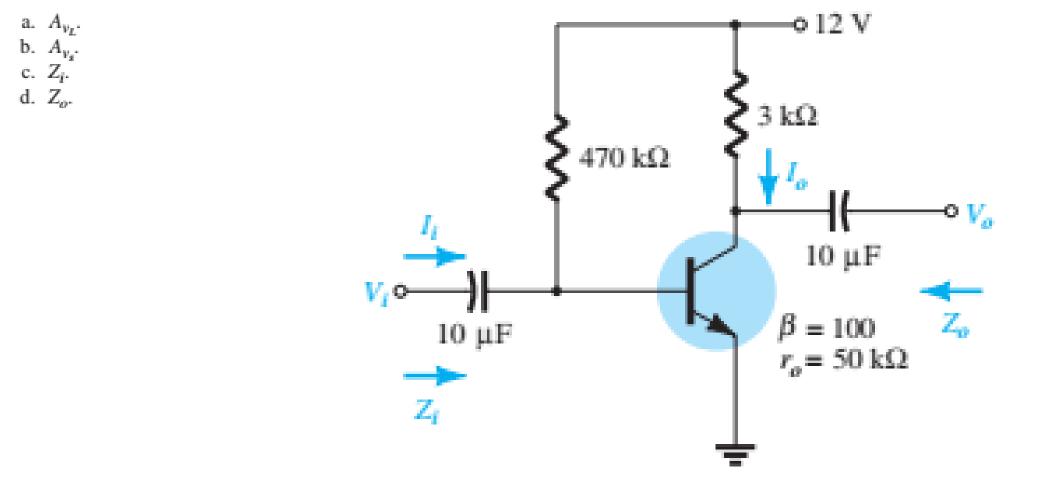
Emitter-Follower Ct. R_s + b P_b R_s + b P_b R_s + P_b R_s

$$A_{v_L} = \frac{V_o}{V_i}$$

$$Z_i = R_B ||Z_b$$

$$Z_b \cong \beta(R_E ||R_L)$$

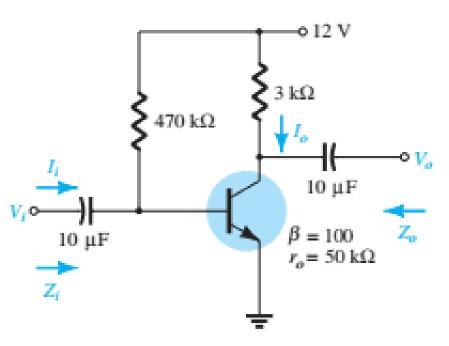
$$Z_o \cong r_e$$


7

 $R_E \| R_L$

 $R_E \| R_L +$

Effect of R_L and R_s (Example)


EXAMPLE 5.11 Using the parameter values for the fixed-bias configuration of Example 5.1 with an applied load of 4.7 k Ω and a source resistance of 0.3 k Ω , determine the following and compare to the no-load values:

Effect of R_L and R_s (Example)

EXAMPLE 5.11 Using the parameter values for the fixed-bias configuration of Example 5.1 with an applied load of 4.7 k Ω and a source resistance of 0.3 k Ω , determine the following and compare to the no-load values:

a. A_{v_L} . b. A_{v_i} . c. Z_i . d. Z_o .

Solution:

a. Eq. (5.73):
$$A_{v_L} = -\frac{R_C \| R_L}{r_e} = -\frac{3 \text{ k}\Omega \| 4.7 \text{ k}\Omega}{10.71 \Omega} = -\frac{1.831 \text{ k}\Omega}{10.71 \Omega} = -170.98$$

which is significantly less than the no-load gain of -280.11.
b. Eq. (5.76): $A_{v_s} = \frac{Z_i}{Z_i + R_s} A_{v_L}$
With $Z_i = 1.07 \text{ k}\Omega$ from Example 5.1, we have
 $A_{v_s} = \frac{1.07 \text{ k}\Omega}{1.07 \text{ k}\Omega + 0.3 \text{ k}\Omega} (-170.98) = -133.54$
which again is significantly less than $A_{v_{NL}}$ or A_{v_L} .
c. $Z_i = 1.07 \text{ k}\Omega$ as obtained for the no-load situation.
d. $Z_s = R_C = 3 \text{ k}\Omega$ as obtained for the no-load situation.

 $Z_o = R_C = 3 \,\mathrm{k}\Omega$ as obtained for the no-load situation. The example clearly demonstrates that $A_{\nu_{\rm NL}} > A_{\nu_L} > A_{\nu_L}$.

Determining the Current Gain

Determining the Current gain

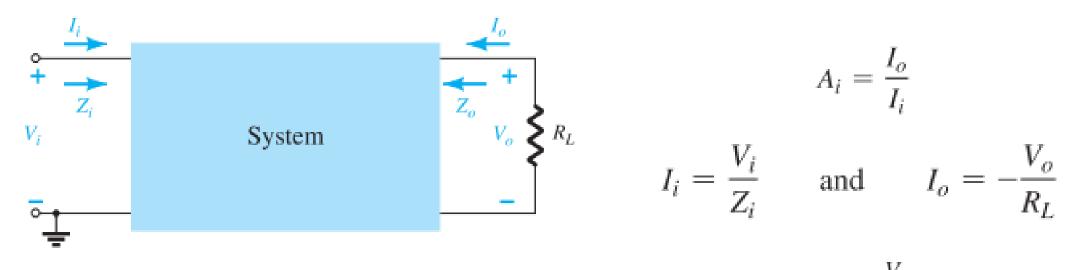
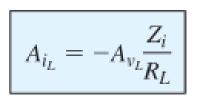
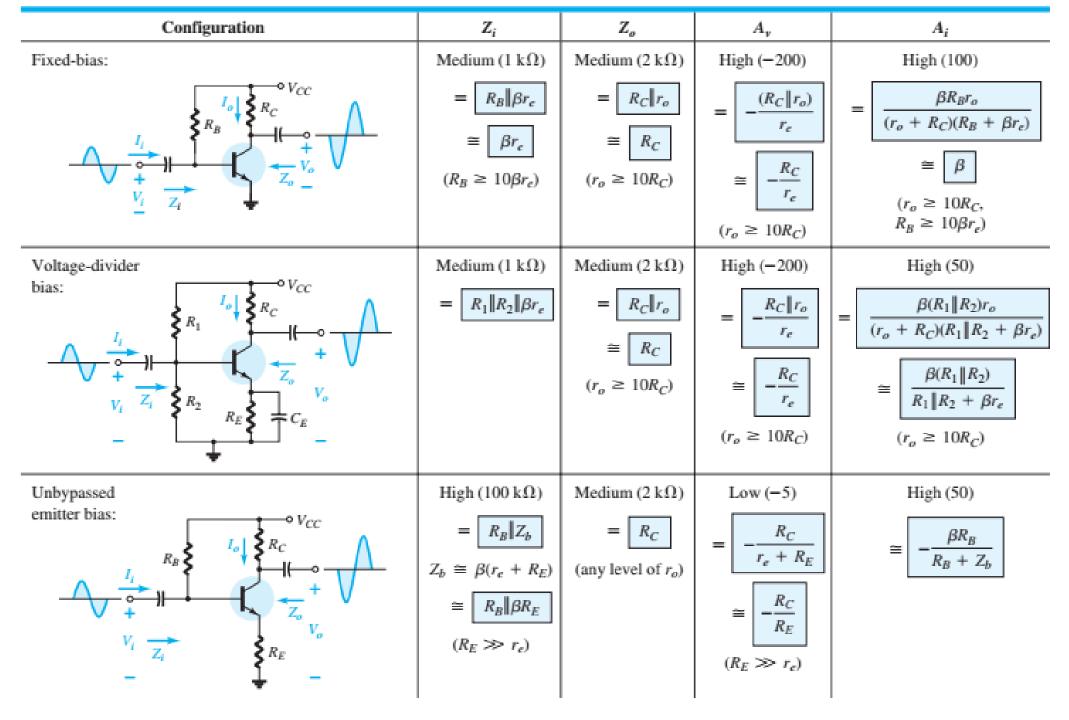



FIG. 5.60


Determining the current gain using the voltage gain.

 For each transistor configuration, the current gain can be determined directly from the voltage gain, the defined load, and the input impedance.

$$A_{i_L} = \frac{I_o}{I_i} = \frac{-\frac{V_o}{R_L}}{\frac{V_i}{Z_i}} = -\frac{V_o}{V_i} \cdot \frac{Z_i}{R_L}$$

Summary Table

Configuration	Zi	Zo	A_{v}	A_i
Emitter- follower: I_i R_B V_{cc} V_{cc} V_{cc} V_{cc} V_{cc} V_{cc} V_{cc} V_{cc}	High (100 k Ω) = $R_B \ Z_b$ $Z_b \cong \beta(r_e + R_E)$ $\cong R_B \ \beta R_E$ $(R_E \gg r_e)$	Low (20 Ω) $= \boxed{R_E \ r_e}$ $\cong \boxed{r_e}$ $(R_E \gg r_e)$	$Low (\cong 1)$ $= \boxed{\frac{R_E}{R_E + r_e}}$ $\cong \boxed{1}$	High (-50) $\cong \boxed{-\frac{\beta R_B}{R_B + Z_b}}$
Common-base: I_i V_i Z_i E_E V_{EE} V_{CC} V_{CC}	Low (20 Ω) $= \boxed{R_E \ r_e}$ $\cong \boxed{r_e}$ $(R_E \gg r_e)$	Medium (2 k Ω) = R_C	High (200) $\cong \boxed{\frac{R_C}{r_e}}$	Low (−1) ≅ -1
Collector feedback: I_{o} V_{CC} R_{F} R_{C} R_{C} V_{o} V_{CC} R_{C} R_{C} V_{o} V_{CC} R_{C} V_{CC} R_{C} V_{C}	$\label{eq:medium} \begin{array}{l} \text{Medium} \left(1 \ \text{k} \Omega\right) \\ = \boxed{\frac{r_e}{\frac{1}{\beta} + \frac{R_C}{R_F}}} \\ (r_o \geq 10 R_C) \end{array}$	Medium $(2 \text{ k}\Omega)$ $\cong \boxed{R_C \ R_F}$ $(r_o \ge 10R_C)$	High (-200) $\cong \boxed{-\frac{R_C}{r_e}}$ $(r_o \ge 10R_C)$ $(R_F \gg R_C)$	High (50) = $\frac{\beta R_F}{R_F + \beta R_C}$ $\cong \frac{R_F}{R_C}$

Configuration	$A_{v_L} = V_o/V_i$	Zi	Z_o
$ \begin{array}{c} $	$\frac{-(R_L \ R_C)}{r_e}$	$R_B \ \beta r_e$	R _C
	Including r_o : $\frac{(R_L \ R_C \ r_o)}{r_e}$	$R_B \ \beta r_e$	R _C ∥r _o
$ \begin{array}{c} $	$\frac{-(R_L \ R_C)}{r_e}$	$R_1 \ R_2 \ \beta r_e$	R _C
	Including r_o : $\frac{-(R_L R_C r_o)}{r_e}$	$R_1 \ R_2 \ \beta r_e$	R _C ∥r _o

Configuration	$A_{v_L} = V_o/V_i$	Zi	Zo
$ \begin{array}{c} $	≅ 1	$\begin{aligned} R'_E &= R_L \ R_E \\ R_1 \ R_2 \ \beta (r_e + R'_E) \end{aligned}$	$\begin{split} R_s' &= R_s \ R_1\ R_2\\ R_E \ \left(\frac{R_s'}{\beta} + r_\epsilon\right) \end{split}$
	Including r_o : $\cong 1$	$R_1 \ R_2 \ \beta(r_e + R_E')$	$R_E \ \left(\frac{R'_s}{\beta} + r_\epsilon \right)$
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array} \\ \begin{array}{c} \end{array}\\ \end{array} \\ \begin{array}{c} \end{array}\\ \end{array} \\ \begin{array}{c} \end{array}\\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array}\\ \end{array} \\ \begin{array}{c} \end{array}\\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} $ \left \left \left \left \left \left \left \left \left \left	$\cong \frac{-(R_L \ R_C)}{r_e}$	$R_E \ r_e$	R _C
	Including r_o : $\cong \frac{-(R_L \ R_C\ r_o)}{r_e}$	$R_E \ r_e$	$R_C \ r_o$
$ \begin{array}{c} $	$\frac{-(R_L \ R_C)}{R_E}$	$R_1 \ R_2 \ \beta(r_\epsilon + R_E)$	R _C
	Including r_o : $\frac{-(R_L R_C)}{R_E}$	$R_1 \ R_2 \ \beta(r_e + R_e)$	$\cong R_C$

Configuration	$A_{v_L} = V_o/V_i$	Z_i	Z_o
$\begin{array}{c} V_{CC} \\ R_{B} \\ R_{C} \\ R_{B} \\ R_{C} $	$\frac{-(R_L \ R_C)}{R_{E_1}}$	$R_B \ \beta(r_e + R_{E_1})$	R _C
	Including r_o : $\frac{-(R_L R_C)}{R_{E_t}}$	$R_B \ \beta(r_e + R_E)$	$\cong R_C$
$ \begin{array}{c} $	$\frac{-(R_L \ R_C)}{r_e}$	$\beta r_e \ \frac{R_F}{ A_v }$	R _C
	Including r_o : $\frac{-(R_L R_C r_o)}{r_e}$	$\beta r_e \ \frac{R_F}{ A_v }$	$R_C \ R_F\ r_o$
	$\frac{-(R_L \ R_C)}{R_E}$	$\beta R_E \ \frac{R_F}{ A_v }$	$\cong R_C \ R_F$
$ \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	Including r_o : $\cong \frac{-(R_L R_C)}{R_E}$	$\cong \beta R_E \ \frac{R_F}{ A_v }$	$\cong R_C \ R_F$

